Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87.307
Filtrar
1.
Rev. neurol. (Ed. impr.) ; 78(8): 219-228, Ene-Jun, 2024. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-VR-487

RESUMO

Introducción: La doble tarea es una intervención no farmacológica en personas con condiciones neurodegenerativas, utilizada en la enfermedad de Parkinson (EP), principalmente para favorecer el desempeño motor. El objetivo de esta revisión es reunir la evidencia actual sobre cómo el entrenamiento de doble tarea afecta a los procesos cognitivos en personas que presenten EP. Material y métodos. Se desarrolló una revisión sistemática, aplicando las directrices de PRISMA, incluyendo artículos obtenidos en las bases de datos de PubMed, Web of Science, Science Direct y Springer Link. La calidad metodológica se evaluó mediante PEDro y ROBINS-I. Resultados: Doce artículos cumplieron con los criterios de inclusión y exclusión: nueve de ellos corresponden a ensayos controlados aleatorizados y los tres restantes fueron estudios no aleatorizados. Se identificaron mejoras en la atención y las funciones ejecutivas, aunque la diversidad en enfoques y duración dificulta llegar a conclusiones definitivas. Conclusiones: Es crucial expandir la investigación, estandarizando los programas de intervención. Del mismo modo, es importante llevar a cabo estudios longitudinales y controlados aleatorizados en muestras representativas que permitan llegar a conclusiones aplicables a otros contextos.(AU)


Introduction: Dual-tasking is a non-pharmacological intervention in people with neurodegenerative conditions, and is used in Parkinson’s disease (PD), primarily to enhance motor performance. The aim of this review is to compile the current evidence on how dual-task training affects cognitive processes in people with PD. Material and methods: A systematic review was undertaken, applying PRISMA guidelines, which included articles obtained from the PubMed, Web of Science, Science Direct and Springer Link databases. Methodological quality was assessed using PEDro and ROBINS-I. Results: Twelve articles met the inclusion and exclusion criteria: nine of them were randomized controlled trials, and the remaining three were non-randomized studies. Improvements in attention and executive functions were identified, although the diversity of approaches and duration means that reaching definitive conclusions is difficult. Conclusions: Increased research and standardized intervention programmes are essential. Longitudinal and randomized controlled studies in representative samples which provide conclusions that are applicable to other contexts are also important.(AU)


Assuntos
Humanos , Masculino , Feminino , Cognição , Doença de Parkinson , Neurologia , Doenças do Sistema Nervoso
2.
Neurología (Barc., Ed. impr.) ; 39(4): 340-344, May. 2024. tab
Artigo em Inglês | IBECS | ID: ibc-VR-492

RESUMO

Background and purpose: The aim of this study was to assess the possible pharmacological interactions between safinamide and antidepressants, and in particular the appearance of serotonin syndrome with data from real life. Methods: We conducted a retrospective observational study of patients with Parkinson's disease from our Movement Disorders Unit, who were under treatment with any antidepressant drug and safinamide. Specifically, symptoms suggestive of serotonin syndrome were screened for. Also, we collected time of simultaneous use, doses of levodopa and other antiparkinsonian drugs. Results: Clinical records were reviewed for the study period of September 2018 to September 2019. Seventy-eight PD patients who were treated with safinamide of which 25 (32.05%) had a concomitant treatment with an antidepressant drug, being sertraline and escitalopram the most frequent. Mean age was 80 years ± 8.43 and H&Y stage was 3 [2–4]. Mean dose of levodopa used was 703.75 mg ± 233.15. Median duration of concomitant treatment with safinamide and antidepressant drug was 6 months (IQR 20.5), and over eighteen months in 5 cases. No case of serotonin syndrome was recorded, neither was any of its typical manifestations combined or in isolation. Conclusions: Our real clinical practice study suggests that concomitant use of safinamide with antidepressant drugs in PD patients seemed to be safe and well tolerated, even in the long term. However, caution is warranted, individualizing treatment regimens and monitoring the potential appearance of adverse effects.(AU)


Objetivos: El objetivo de este estudio ha sido evaluar las posibles interacciones farmacológicas entre safinamida y antidepresivos; en particular la aparición del síndrome serotoninérgico mediante datos obtenidos en la vida real. Material y métodos: Realizamos un estudio observacional retrospectivo de pacientes con enfermedad de Parkinson (EP) de nuestra unidad de trastornos del movimiento, que estaban en tratamiento con algún fármaco antidepresivo y safinamida. Específicamente, se examinaron los síntomas sugestivos de síndrome serotoninérgico. Además, se recogieron tiempos de uso simultáneo, dosis de levodopa y otros fármacos antiparkinsonianos concomitantes. Resultados: Se revisaron las historias clínicas correspondientes al período de estudio de septiembre de 2018 a septiembre de 2019. Setenta y ocho pacientes con EP se encontraban en tratamiento con safinamida, de los cuales 25 (32,05%) se encontraban recibiendo además un fármaco antidepresivo, siendo sertralina y escitalopram los más frecuentes. La edad media fue de 80 años ± 8,43 y el estadio H&Y fue de 3 [2-4]. La dosis media de levodopa utilizada fue de 703,75 mg ± 233,15. La mediana de duración del tratamiento concomitante con safinamida y un fármaco antidepresivo fue de 6 meses (IQR: 20,5), y más de 18 meses en 5 casos. No se registró ningún caso de síndrome serotoninérgico, ni tampoco ninguno de sus síntomas de forma aislada. Conclusión: Nuestro estudio de práctica clínica real sugiere que el uso concomitante de safinamida con fármacos antidepresivos en pacientes con EP parece ser seguro y bien tolerado, incluso a largo plazo. Sin embargo, es necesaria precaución, individualizando los regímenes de tratamiento, y controlando la posible aparición de efectos adversos.(AU)


Assuntos
Humanos , Masculino , Feminino , Doença de Parkinson , Depressão , Serotoninérgicos , Transtornos dos Movimentos , Antidepressivos , Neurologia , Doenças do Sistema Nervoso , Estudos Retrospectivos , Registros Médicos/estatística & dados numéricos
3.
Neurología (Barc., Ed. impr.) ; 39(4): 345-352, May. 2024. tab, ilus, graf
Artigo em Inglês | IBECS | ID: ibc-VR-493

RESUMO

Introduction: Reliable assessment of individuals with Parkinson's disease (PD) is essential for providing adequate treatment. Clinical assessment is a complex and time-consuming task, especially for bradykinesia, since its evaluation can be influenced by the degree of experience of the examiner, patient collaboration and individual bias. Improvement of the clinical evaluation can be obtained by considering assessments from several professionals. However, this is only true when inter and intra-rater agreement are high. Recently, the Movement Disorder Society highlighted, during the COVID-19 pandemic, the need to develop and validate technologies for remote assessment of the motor status of people with PD. Thus, this study introduces an objective strategy for the remote evaluation of bradykinesia using multi-specialist analysis. Methods: Twelve volunteers with PD participated and these were asked to execute finger tapping, hand opening/closing and pronation/supination movements. Each task was recorded and rated by fourteen PD health experts for each patient. The scores were assessed on an individual basis. Intra and inter-rater agreement and correlation were estimated. Results: The results showed that agreements and correlations between experienced examiners were high with low variability. In addition, group analysis was noted as possessing the potential to solve individual inconsistency bias. Conclusion: Furthermore, this study demonstrated the need for a group with prior training and experience, along with indicating the importance for the development of a clinical protocol that can use telemedicine for the evaluation of individuals with PD, as well as the inclusion of a specialized mediating group. In Addition, this research helps to the development of a valid remote assessment of bradykinesia.(AU)


Introducción: La evaluación confiable de las personas con la enfermedad de Parkinson (EP) es esencial para lograr con un tratamiento adecuado. La evaluación clínica es una tarea compleja y que requiere mucho tiempo, especialmente para la bradicinesia, ya que su evaluación puede verse influenciada por el grado de experiencia del examinador, la colaboración del paciente y el sesgo individual. La mejora de la evaluación clínica se puede obtener considerando las evaluaciones de varios profesionales. Sin embargo, esto solo es más preciso cuando el convenio intra e inter evaluadores es alto. Recientemente, la Sociedad de Trastornos del Movimiento destacó, durante la pandemia COVID-19, la necesidad de desarrollar y validar tecnologías para la evaluación remota del estado motor de las personas con EP. Por lo tanto, este estudio presenta una estrategia objetiva para la evaluación remota de la bradicinesia mediante un análisis multi evaluadores. Métodos: Participaron 12 voluntarios con EP y se les pidió que ejecutaran movimientos de golpeteo de dedos de las manos, movimientos con las manos y pronación-supinación de las manos. Cada ejecución del movimiento fue registrado y calificado por 14 expertos en salud. Las puntuaciones se evaluaron de forma individual. Se estimó el convenio y la correlación intra e inter evaluadores. Resultados: Los resultados mostraron que los convenios y las correlaciones inter evaluadores experimentados son altos con baja variabilidad. Además, se observó que el análisis de grupo posee el potencial de resolver el sesgo de inconsistencia individual. Conclusiones: De esta forma, este estudio demostró la necesidad de un grupo con formación y experiencia previa, señalando la importancia para el desarrollo de un protocolo clínico que utiliza la telemedicina para la evaluación de personas con EP y como la inclusión de un grupo mediador especializado. En realidad, esta investigación propone una evaluación remota eficaz de la bradicinesia.(AU)


Assuntos
Humanos , Masculino , Feminino , Neurologia , Doença de Parkinson , Hipocinesia , Telemedicina , Testes de Estado Mental e Demência
4.
Neurologia (Engl Ed) ; 39(4): 340-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616061

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to assess the possible pharmacological interactions between safinamide and antidepressants, and in particular the appearance of serotonin syndrome with data from real life. METHODS: We conducted a retrospective observational study of patients with Parkinson's disease from our Movement Disorders Unit, who were under treatment with any antidepressant drug and safinamide. Specifically, symptoms suggestive of serotonin syndrome were screened for. Also, we collected time of simultaneous use, doses of levodopa and other antiparkinsonian drugs. RESULTS: Clinical records were reviewed for the study period of September 2018 to September 2019. Seventy-eight PD patients who were treated with safinamide of which 25 (32.05%) had a concomitant treatment with an antidepressant drug, being sertraline and escitalopram the most frequent. Mean age was 80 years±8.43 and H&Y stage was 3 [2-4]. Mean dose of levodopa used was 703.75mg±233.15. Median duration of concomitant treatment with safinamide and antidepressant drug was 6 months (IQR 20.5), and over eighteen months in 5 cases. No case of serotonin syndrome was recorded, neither was any of its typical manifestations combined or in isolation. CONCLUSIONS: Our real clinical practice study suggests that concomitant use of safinamide with antidepressant drugs in PD patients seemed to be safe and well tolerated, even in the long term. However, caution is warranted, individualizing treatment regimens and monitoring the potential appearance of adverse effects.


Assuntos
Alanina/análogos & derivados , Benzilaminas , Doença de Parkinson , Síndrome da Serotonina , Humanos , Idoso de 80 Anos ou mais , Levodopa/efeitos adversos , Antidepressivos/efeitos adversos , Doença de Parkinson/tratamento farmacológico
5.
Neurologia (Engl Ed) ; 39(4): 345-352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616062

RESUMO

INTRODUCTION: Reliable assessment of individuals with Parkinson's disease (PD) is essential for providing adequate treatment. Clinical assessment is a complex and time-consuming task, especially for bradykinesia, since its evaluation can be influenced by the degree of experience of the examiner, patient collaboration and individual bias. Improvement of the clinical evaluation can be obtained by considering assessments from several professionals. However, this is only true when inter and intra-rater agreement are high. Recently, the Movement Disorder Society highlighted, during the COVID-19 pandemic, the need to develop and validate technologies for remote assessment of the motor status of people with PD. Thus, this study introduces an objective strategy for the remote evaluation of bradykinesia using multi-specialist analysis. METHODS: Twelve volunteers with PD participated and these were asked to execute finger tapping, hand opening/closing and pronation/supination movements. Each task was recorded and rated by fourteen PD health experts for each patient. The scores were assessed on an individual basis. Intra and inter-rater agreement and correlation were estimated. RESULTS: The results showed that agreements and correlations between experienced examiners were high with low variability. In addition, group analysis was noted as possessing the potential to solve individual inconsistency bias. CONCLUSION: Furthermore, this study demonstrated the need for a group with prior training and experience, along with indicating the importance for the development of a clinical protocol that can use telemedicine for the evaluation of individuals with PD, as well as the inclusion of a specialized mediating group. In Addition, this research helps to the development of a valid remote assessment of bradykinesia.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , Hipocinesia/diagnóstico , Hipocinesia/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Pandemias , Movimento
6.
Cell Biochem Funct ; 42(3): e4014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616346

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERß is often considered to be safer. In this review, we explore the role of ERß in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aß) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERß activation and the process underlying ERß's neuroprotective mechanisms in AD and PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Feminino , Masculino , Humanos , Doença de Parkinson/tratamento farmacológico , Estrogênios/farmacologia , Receptor beta de Estrogênio/genética , Receptor alfa de Estrogênio/genética , Doença de Alzheimer/tratamento farmacológico
7.
Rev Neurol ; 78(8): 219-228, 2024 Apr 16.
Artigo em Espanhol | MEDLINE | ID: mdl-38618669

RESUMO

INTRODUCTION: Dual-tasking is a non-pharmacological intervention in people with neurodegenerative conditions, and is used in Parkinson's disease (PD), primarily to enhance motor performance. The aim of this review is to compile the current evidence on how dual-task training affects cognitive processes in people with PD. MATERIAL AND METHODS: A systematic review was undertaken, applying PRISMA guidelines, which included articles obtained from the PubMed, Web of Science, Science Direct and Springer Link databases. Methodological quality was assessed using PEDro and ROBINS-I. RESULTS: Twelve articles met the inclusion and exclusion criteria: nine of them were randomized controlled trials, and the remaining three were non-randomized studies. Improvements in attention and executive functions were identified, although the diversity of approaches and duration means that reaching definitive conclusions is difficult. CONCLUSIONS: Increased research and standardized intervention programmes are essential. Longitudinal and randomized controlled studies in representative samples which provide conclusions that are applicable to other contexts are also important.


TITLE: Efectos sobre los procesos cognitivos del entrenamiento basado en doble tarea en personas con enfermedad de Parkinson: una revisión sistemática.Introducción. La doble tarea es una intervención no farmacológica en personas con condiciones neurodegenerativas, utilizada en la enfermedad de Parkinson (EP), principalmente para favorecer el desempeño motor. El objetivo de esta revisión es reunir la evidencia actual sobre cómo el entrenamiento de doble tarea afecta a los procesos cognitivos en personas que presenten EP. Material y métodos. Se desarrolló una revisión sistemática, aplicando las directrices de PRISMA, incluyendo artículos obtenidos en las bases de datos de PubMed, Web of Science, Science Direct y Springer Link. La calidad metodológica se evaluó mediante PEDro y ROBINS-I. Resultados. Doce artículos cumplieron con los criterios de inclusión y exclusión: nueve de ellos corresponden a ensayos controlados aleatorizados y los tres restantes fueron estudios no aleatorizados. Se identificaron mejoras en la atención y las funciones ejecutivas, aunque la diversidad en enfoques y duración dificulta llegar a conclusiones definitivas. Conclusiones. Es crucial expandir la investigación, estandarizando los programas de intervención. Del mismo modo, es importante llevar a cabo estudios longitudinales y controlados aleatorizados en muestras representativas que permitan llegar a conclusiones aplicables a otros contextos.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Função Executiva , Projetos de Pesquisa , Cognição
8.
J Biochem Mol Toxicol ; 38(5): e23714, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629493

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease featured by progressive loss of nigrostriatal dopaminergic neurons, the etiology of which is associated with the existence of neuroinflammatory response and oxidative stress. Vincamine is an indole alkaloid that was reported to exhibit potent anti-inflammatory and antioxidant properties in many central and/or peripheral diseases. Nevertheless, the specific role of vincamine in PD development remains unknown. In our study, dopaminergic neuron loss was determined through immunohistochemistry staining and western blot analysis of tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of PD mice. Reactive oxygen species (ROS) production and malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) levels were detected through DHE staining and commercially available kits to assess oxidative stress. Pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) levels in the SN were measured via RT-qPCR and western blot analysis. Microglial and astrocyte activation was examined through immunofluorescence staining of Iba-1 (microglia marker) and GFAP (astrocyte marker) in the SN. The regulation of vincamine on the NF-κB and Nrf2/HO-1 pathway was estimated through western blot analysis. Our results showed that vincamine treatment decreased TNF-α, IL-1ß, and IL-6 mRNA and protein levels, reduced GFAP and Iba-1 expression, decreased ROS production and MDA level, and increased SOD activity and GSH level in the SN of PD mice. Mechanically, vincamine repressed the phosphorylation levels of p65, IKKß, and IκBα but enhanced the protein levels of Nrf2 and HO-1 in PD mice. Collectively, vincamine plays a neuroprotective role in PD mouse models by alleviating neuroinflammation and oxidative damage via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Doença de Parkinson , Vincamina , Camundongos , Animais , NF-kappa B/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Transdução de Sinais , Estresse Oxidativo , Superóxido Dismutase/metabolismo
9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612544

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/tratamento farmacológico , Ácido Glutâmico
10.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612620

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , 60650 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Eixo Encéfalo-Intestino , Bases de Dados Factuais , Dopamina
11.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612708

RESUMO

Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.


Assuntos
Melanoma , Melatonina , Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Citoplasma , Fatores de Crescimento Neural
12.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612739

RESUMO

In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Corpos de Lewy , Corpo Estriado , Progressão da Doença
13.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612761

RESUMO

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Assuntos
Acetilcisteína/análogos & derivados , Doença de Parkinson , Sinucleinopatias , Humanos , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , alfa-Sinucleína/genética , Chaperona BiP do Retículo Endoplasmático , Administração Intranasal , Neuroproteção
14.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612777

RESUMO

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Humanos , Glioblastoma/genética , Proteínas de Membrana/genética , Células Endoteliais , 60489 , Glioma/genética , Neuroglia , Neovascularização Patológica/genética
15.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625397

RESUMO

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Assuntos
Antineoplásicos , Dictyostelium , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
16.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605039

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Gânglios da Base/fisiologia , Neurônios/fisiologia
17.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605062

RESUMO

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Ritmo beta/fisiologia , Movimento/fisiologia
18.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607048

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Cardiolipinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias , Membranas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo
19.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607054

RESUMO

Alterations in olfactory functions are proposed as possible early biomarkers of neurodegenerative diseases. Parkinson's and Alzheimer's diseases manifest olfactory dysfunction as a symptom, which is worth mentioning. The alterations do not occur in all patients, but they can serve to rule out neurodegenerative pathologies that are not associated with small deficits. Several prevalent neurodegenerative conditions, including impaired smell, arise in the early stages of Parkinson's and Alzheimer's diseases, presenting an attractive prospect as a snitch for early diagnosis. This review covers the current knowledge on the link between olfactory deficits and Parkinson's and Alzheimer's diseases. The review also covers the emergence of olfactory receptors as actors in the pathophysiology of these diseases. Olfactory receptors are not exclusively expressed in olfactory sensory neurons. Olfactory receptors are widespread in the human body; they are expressed, among others, in the testicles, lungs, intestines, kidneys, skin, heart, and blood cells. Although information on these ectopically expressed olfactory receptors is limited, they appear to be involved in cell recognition, migration, proliferation, wound healing, apoptosis, and exocytosis. Regarding expression in non-chemosensory regions of the central nervous system (CNS), future research should address the role, in both the glia and neurons, of olfactory receptors. Here, we review the limited but relevant information on the altered expression of olfactory receptor genes in Parkinson's and Alzheimer's diseases. By unraveling how olfactory receptor activation is involved in neurodegeneration and identifying links between olfactory structures and neuronal death, valuable information could be gained for early diagnosis and intervention strategies in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Transtornos do Olfato , Doença de Parkinson , Receptores Odorantes , Humanos , Doenças Neurodegenerativas/patologia , Olfato/fisiologia , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Transtornos do Olfato/diagnóstico
20.
Protein Sci ; 33(5): e4980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38607248

RESUMO

Endosomal trafficking ensures the proper distribution of lipids and proteins to various cellular compartments, facilitating intracellular communication, nutrient transport, waste disposal, and the maintenance of cell structure. Retromer, a peripheral membrane protein complex, plays an important role in this process by recruiting the associated actin-polymerizing WASH complex to establish distinct sorting domains. The WASH complex is recruited through the interaction of the VPS35 subunit of retromer with the WASH complex subunit FAM21. Here, we report the identification of two separate fragments of FAM21 that interact with VPS35, along with a third fragment that binds to the VPS29 subunit of retromer. The crystal structure of VPS29 bound to a peptide derived from FAM21 shows a distinctive sharp bend that inserts into a conserved hydrophobic pocket with a binding mode similar to that adopted by other VPS29 effectors. Interestingly, despite the network of interactions between FAM21 and retromer occurring near the Parkinson's disease-linked mutation (D620N) in VPS35, this mutation does not significantly impair the direct association with FAM21 in vitro.


Assuntos
Endossomos , Doença de Parkinson , Humanos , Mutação , Transporte Proteico , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...